Exercise 50

Find the horizontal and vertical asymptotes of each curve. If you have a graphing device, check your work by graphing the curve and estimating the asymptotes.

$$
y=\frac{1+x^{4}}{x^{2}-x^{4}}
$$

Solution

Calculate the limits as $x \rightarrow \pm \infty$ to determine the horizontal asymptote. In the second limit, make the substitution, $x=-u$, so that as $x \rightarrow-\infty, u \rightarrow \infty$.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{1+x^{4}}{x^{2}-x^{4}} & =\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{4}}+1}{\frac{1}{x^{2}}-1}=\frac{0+1}{0-1}=-1 \\
\lim _{x \rightarrow-\infty} \frac{1+x^{4}}{x^{2}-x^{4}} & =\lim _{u \rightarrow \infty} \frac{1+(-u)^{4}}{(-u)^{2}-(-u)^{4}} \\
& =\lim _{u \rightarrow \infty} \frac{1+u^{4}}{u^{2}-u^{4}} \\
& =\lim _{u \rightarrow \infty} \frac{\frac{1}{u^{4}}+1}{\frac{1}{u^{2}}-1} \\
& =\frac{0+1}{0-1} \\
& =-1
\end{aligned}
$$

Therefore, the horizontal asymptote is $y=-1$. The vertical asymptotes are found by setting what's in the denominator equal to zero and solving for x.

$$
\begin{gathered}
x^{2}-x^{4}=0 \\
x^{2}\left(1-x^{2}\right)=0 \\
x^{2}(1+x)(1-x) \\
x=0 \quad \text { or } \quad x=-1 \quad \text { or } \quad x=1
\end{gathered}
$$

The function is graphed versus x below with the asymptotes labelled.

